
Computing the Chern-Scwrartz-MacPherson Class and
Euler Characteristic of Complete Simplical Toric Varieties

Martin Helmer1

1 University of Western Ontario, Canada, mhelmer2@uwo.ca.

Webpage: http: // publish. uwo. ca/ ~mhelmer2/

In this note we present Algorithm 2.1, a combinatorial algorithm which com-
putes the Chern-Schwartz-MacPherson (cSM) class and/or the Euler characteristic
of a complete simplicial toric variety XΣ defined by a fan Σ (that is we allow XΣ

to have finite quotient singularities). The algorithm is based on a result of Barthel,
Brasselet and Fieseler [1] which gives an expression for the cSM class of a toric va-
riety in terms of torus orbit closures. Note that we will only consider toric varieties
XΣ over the complex numbers C.

We also note that the restriction to complete simplicial toric varieties is not
required in the statement of the result of Barthel, Brasselet and Fieseler [1] on
which our algorithm is based, indeed these restrictions are present on the algorithm
only for the purpose of simplifying the construction of the Chow ring of the toric
variety. If one was able to construct the Chow ring in a simple manner with the
restrictions removed the algorithm could be applied unchanged in this more general
setting.

The Macaulay2 [3] implementation of our algorithm for computing the cSM

class and Euler characteristic of a complete simplicial toric variety presented in this
note can be found at https://github.com/Martin-Helmer/char-class-calc.
This implementation is accessed via the “CharToric" package.

1 Setting and Notation

Let XΣ be a n-dimensional complete and simplicial toric variety; then the intersec-
tion product can be defined on rational cycles (see §12.5 of [2]) so that, if we let
Q denote the rational numbers and Z the integers, we have that the rational Chow
ring of XΣ is given by the graded ring

A∗(XΣ)Q = A∗(XΣ)⊗Z Q =
n⊕

j=0

A j(XΣ)⊗Z Q. (1)

For each cone σ in the fan Σ the orbit closure V (σ) is a subvariety of codimen-
sion dim(σ). We will write [V (σ)] for the rational equivalence class of V (σ) in
Adim(σ)(XΣ).
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Proposition 1.1 (Lemma 12.5.1 of [2]) The collections [V (σ)] ∈ A j(XΣ) for σ ∈
Σ having dimension n− j generate A j(XΣ), the Chow group of dimension j. Further
the collection [V (σ)] for all σ ∈ Σ generates A∗(XΣ) as an abelian group.

The following proposition gives us a simple method to compute the rational
Chow ring of a complete, simplicial toric variety XΣ.

Proposition 1.2 (Theorem 12.5.3 of Cox, Little, Schenck [2]) Let N be an inte-
ger lattice with dual M. Let XΣ be a complete and simplicial toric variety with
generating rays Σ(1) = ρ1, . . . ,ρr where ρ j =

〈
v j
〉

for v j ∈ N. Then we have that

Q[x1, . . . ,xr]/(I +J )∼= A∗(XΣ)Q, (2)

with the isomorphism map specified by [xi] 7→ [V (ρi)]. Here I denotes the Stanley-
Reisner ideal of the fan Σ, that is the ideal in Q[x1, . . . ,xr] specified by

I = (xi1 · · ·xis | ii j distinct and ρi1 + · · ·+ρis is not a cone of Σ) (3)

and J denotes the ideal of Q[x1, . . . ,xr] generated by linear relations of the rays,
that is J is generated by linear forms

r

∑
j=1

m(v j)x j (4)

for m ranging over some basis of M.

2 Algorithm

In this section we present Algorithm 2.1 which computes the cSM class and/or Euler
characteristic of a complete simplicial toric variety defined by a fan Σ.

Proposition 2.1 (Main Theorem of Barthel, Brasselet and Fieseler [1]) Let XΣ be
an n-dimensional complex toric variety specified by a fan Σ. We have that the
Chern-Schwartz-MacPherson class of XΣ can be written in terms of orbit closures
as

cSM(XΣ) = ∑
σ∈Σ

[V (σ)] ∈ A∗(XΣ)Q (5)

where V (σ) is the closure of the torus orbit corresponding to σ .

Lemma 2.2 is a modified version of Proposition 11.1.8. of Cox, Little, Schenck
[2], it will allow us to compute the multiplicity of a simplicial cone. We have
slightly altered the statement of the result to explicitly show how we will compute
these multiplicities in practice.
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Lemma 2.2 (Modified version of Proposition 11.1.8. of Cox, Little, Schenck [2])
Let N = Zn be an integer lattice. For a simplicial cone σ = ρ1 + · · ·+ρd ⊂ N let
Mσ be the matrix with columns specified by the generating vectors of the rays
ρ1, . . . ,ρd which define the cone σ ; we have

mult(σ) = |det(Herm(Mσ ))| (6)

where Herm(Mσ ) denotes the Hermite normal form of matrix Mσ with all zero rows
and/or zero columns removed. Further mult(σ) = 1 if and only if Uσ is smooth.

To compute the classes [V (σ)] appearing in (5) we will employ the following
proposition combined with Proposition 1.2.

Proposition 2.3 (Theorem 12.5.2. of Cox, Little, Schenck [2]) Assume that XΣ is
complete and simplicial. If ρ1, . . . ,ρd ∈ Σ(1) are distinct and if σ = ρ1+ · · ·+ρd ∈
Σ then in A∗(XΣ) we have the following:

[V (σ)] = mult(σ)[V (ρ1)] · [V (ρ2)] · · · [V (ρd)]. (7)

Here mult(σ) will be calculated using Lemma 2.2.

In Algorithm 2.1 we present an algorithm to compute cSM(XΣ) for a complete,
simplicial toric variety XΣ defined by a fan Σ. Note that we represent [V (ρ j)] as x j

using the isomorphism in Proposition 1.2.

Algorithm 2.1 Input: A complete, simplicial toric variety XΣ defined by a fan Σ

with Σ(1) = {ρ1, . . . ,ρr} and a boolean, Euler_only, indicating if only the Euler
characteristic is desired. We assume dim(XΣ)≥ 1.
Output: cSM(XΣ) in A∗(XΣ)Q ∼= Q[x1, . . . ,xr]/(I +J ) and/or the Euler charac-
teristic χ(XΣ), if Euler_only=true then only χ(XΣ) will be computed.

• Compute the rational Chow ring A∗(XΣ)Q ∼= Q[x1, . . . ,xr]/(I +J ) using
Proposition 1.2.

• csm = 0.

• For i from dim(XΣ) to 1:

◦ orbits = all subsets of Σ(1) = {ρ1, . . . ,ρr} containing i elements.

◦ total = 0.

◦ For ρ j1 , . . . ,ρ js in orbits:
� σ = ρ j1 + · · ·+ρ js .
� Find w = mult(σ) using Lemma 2.2.
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� [V (σ)] = mult(σ)[V (ρi1)] · · · [V (ρis)] = w · xi1 · · ·xis .
� total = total+[V (σ)].

◦ csm = csm+ total.

◦ If i == dim(XΣ):
� Set (cSM(XΣ))0 = csm.
� Set χ(XΣ) = sum of the coefficients of the monomials in (cSM(XΣ))0.
� If Euler_only==true:

. Return χ(XΣ).

• Set cSM(XΣ) = csm.

• Return cSM(XΣ) and/or χ(XΣ) .

We note that Algorithm 2.1 is strictly combinatorial; hence the runtime depends
only on the combinatorics of the fan Σ defining the toric variety.

3 Performance

In this section we give the run times for Algorithm 2.1 applied to a variety of
examples. Consider a complete simplicial toric variety XΣ. We give two alternate
implementations of Algorithm 2.1 to reflect what we can expect the timings to be
in both the smooth cases and singular cases.

Specifically the running times in Table 1 for Algorithm 2.1 marked with a †
check the input to see if the given fan Σ defines a smooth toric variety, if it does
these implementations use the fact that mult(σ) = 1 for all σ ∈ Σ and hence do not
compute the Hermite normal forms and their determinates in Lemma 2.2. However
to show how the algorithm would perform on a singular input of a similar size
and complexity we also give running times for an implementation which always
computes the Hermite forms and their determinates in Lemma 2.2. In this way
we see in a precise manner what the extra cost associated to computing the cSM

class and Euler characteristic of a singular toric variety would be in comparison
to the cost of computing a smooth toric variety defined by a fan having similar
combinatorial structure.

By default the implementation of Algorithm 2.1 in our “CharToric" package
checks if the input defines a smooth toric variety, i.e. performs the procedure of the
implementations marked with †.

We also remark that the extra cost in the singular case (or in the case where we
don’t check the input) comes entirely from performing linear algebra with integer
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matrices. As such the running times in these cases could perhaps be somewhat
reduced by using a specialized integer linear algebra package. To give a rough
quantification of what performance improvement one might expect from this we
performed some testing using LinBox [4] and PARI [6] via Sage [5] on linear
systems of similar size and structure to those arising in the examples in Table 1. In
this testing we found that the specialized algorithms seemed to be around two to
three times faster than the linear algebra methods used by our implementation in
the “CharToric" package, however this testing is by no means conclusive.

Input Alg. 2.1 † Alg. 2.1 (Euler only) † Alg. 2.1 Alg. 2.1 (Euler only) Chow Ring (Prop. 1.2)

P6 0.0s 0.0s 0.0s 0.0s 0.1 s
P16 5.3s 0.0s 85.4s 0.0s 0.7 s
P5×P6 0.3s 0.0s 3.7s 0.0s 1.2 s
P5×P8 1.1s 0.0s 16.8s 0.1s 2.1 s
P8×P8 12.0s 0.1s 168.5s 0.1s 4.5 s
P5×P5×P5 12.8s 0.2s 156.7s 0.6s 11.8 s
P5×P5×P6 28.4s 0.3s 387.1s 0.8s 17.0 s
Fano sixfold 123 0.3s 0.0s 1.0s 0.4s 1.1 s
Fano sixfold 1007 0.4s 0.1s 1.0s 0.1s 1.8 s

Table 1: Note that the table we present the time to compute the Chow ring seper-
ately from the time reqired for the other computations, as such the total run time
for each algorithm will be the time listed in its column plus the time to compute the
Chow ring if the Chow ring is not already known. Computations were performed
using Macaulay2 [3] on a computer with a 2.9GHz Intel Core i7-3520M CPU and
8 GB of RAM. The Fano sixfolds are those built by the smoothFanoToricVariety
method in the “NormalToricVarieties" Macaulay2 [3] package. Pn denotes a pro-
jective space of dimension n
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